Affine Hecke Algebras: Representations

Cailan Li April 17th, 2024

1. Bernstein Center

 $\mathscr{R} = (X^*(T), R, Y^*(T), R^{\vee}), \ \mathcal{H}(\mathscr{R}) = \mathcal{H}_f \otimes \mathbb{Z}[X^*(T)]$ with cross relation

$$\theta_{\lambda} T_{s_{\alpha}} - T_{s_{\alpha}} \theta_{s(\lambda)} = (q-1) \frac{\theta_{\lambda} - \theta_{s(\lambda)}}{1 - \theta_{-\alpha}}$$

Let $\lambda = s(\lambda)$ above, then adding the two equations yields

$$T_s(\theta_\lambda + \theta_{s(\lambda)}) = (\theta_\lambda + \theta_{s(\lambda)})T_s \tag{1}$$

Theorem 1 (Bernstein)

For any $\lambda \in X_+^*(T)$, define

$$z_{\lambda} = \sum_{w \in W_f} \theta_{w \cdot \lambda}$$

Then $\mathcal{Z}(\mathcal{H}) = \bigoplus_{\lambda \in X_+^*(T)} \mathbb{Z}[q^{\pm 1}] \cdot z_\lambda \cong \mathbb{Z}[q^{\pm 1}][X^*(T)]^{W_f}.$

Proof. $(1)z_{\lambda} \in \mathcal{Z}(\mathcal{H})$: The $\mathbb{Z}_2 = \langle s \rangle$ action on W_f partitions W_f into cosets of size 2. Thus

$$T_s z_{\lambda} = \sum_{w \in W_t/\langle s \rangle} T_s (\theta_{w \cdot \lambda} + \theta_{sw \cdot \lambda}) \stackrel{Eq. (1)}{=} z_{\lambda} T_s$$

(2) $\{z_{\lambda}\}$ generates $\mathcal{Z}(\mathcal{H})$. We have a map $sp:\mathcal{H}\twoheadrightarrow\mathbb{Z}[W_{ext}]=\mathbb{Z}[X^*(T)\rtimes W_f]$ given by sending $q\mapsto 1$.

Lemma 1. Let $G \subseteq R$ faithfully where R is an integral domain. Then $\mathcal{Z}(R \rtimes G) = R^G$.

Proof. $R^G \subseteq \mathcal{Z}(R \rtimes G)$ $r \in R^G$ commutes with R, and note gr = g(r)g = rg and thus commutes with G as well.

 $\underline{\mathcal{Z}(R \rtimes G) \hookrightarrow R^G}$ Let $r \in R$, and suppose $z \in \mathcal{Z}(\mathcal{H})$, write $z = \sum_{g \in G} z_g \otimes g$ where $z_g \in R$. Then

$$\sum_{g \in G} rz_g \otimes g = rz = zr = \sum_{g \in G} z_g \otimes gr = \sum_{g \in G} z_g g(r) \otimes g \quad \forall r \in R$$

Since $\{g\}_{g\in R}$ is an R-basis for $R\rtimes G$ and R is an integral domain it follows that

$$z_g r = z_g g(r) \implies r = g(r) \forall r \in R$$

But $G \cap R$ faithfully and thus only z_1 is nonzero and thus $z = z_1 \in R$. But now $zh = hz = h(z)h \implies z = h(z) \forall h \in G$ and thus $z \in R^G$ as desired.

Let $R = \mathbb{Z}[X^*(T)]$ and $G = W_f$, then $G \subseteq R$ faithfully as the only weight in the intersection of all the hyperplanes is 0. It follows that

$$\mathcal{Z}(\mathbb{Z}[W_{ext}]) = \mathbb{Z}[X^*(T)]^{W_f} = \bigoplus_{\lambda \in X_+^*(T)} \mathbb{Z} \cdot c_{\lambda}, \qquad c_{\lambda} = \sum_{w \in W_f} [w \cdot \lambda]$$

Note $\mathfrak{m} = \ker sp = (1-q)\mathcal{H}$ is a prime ideal. Since sp is surjective it restricts $sp : \mathcal{Z}(\mathcal{H}) \twoheadrightarrow \mathcal{Z}(\mathbb{Z}[W_{ext}])$ and we have the SES

$$0 \to \mathfrak{m}\mathcal{Z}(\mathcal{H}) \to \mathcal{Z}(\mathcal{H}) \xrightarrow{sp} \mathbb{Z}[X^*(T)]^{W_f} \to 0$$

Localize the above sequence at \mathfrak{m} and since this is exact we have $\mathcal{Z}(\mathcal{H})_{\mathfrak{m}}/\mathfrak{m}\mathcal{Z}(\mathcal{H})_{\mathfrak{m}} \cong \mathbb{Z}[X^*(T)]^{W_f}$. But since $sp(z_{\lambda}) = c_{\lambda}$, if we let $Z' = \bigoplus_{\lambda \in X_{+}^*(T)} \mathbb{Z}[q^{\pm 1}] \cdot z_{\lambda}$ we also have

$$0 \to \mathfrak{m} Z' \to Z' \xrightarrow{sp} \mathbb{Z}[X^*(T)]^{W_f} \to 0$$

and thus localizing at \mathfrak{m} it follows that

$$\mathcal{Z}(\mathcal{H})_{\mathfrak{m}}/\mathfrak{m}\mathcal{Z}(\mathcal{H})_{\mathfrak{m}} \cong Z'_{\mathfrak{m}}/\mathfrak{m}Z'_{\mathfrak{m}} \tag{2}$$

 \mathcal{H} if f.g. $(\leq |W_f|)$ over $\mathbb{Z}[X^*(T)]$) which itself is f.g. $(\leq |W_f|)$ over Z'. Since Z' is Noetherian a ring it follows that \mathcal{H} is a Noetherian module over Z' and $\mathcal{Z}(\mathcal{H})$, being a submodule, is thus a f.g. module over Z'. Since $Z'_{\mathfrak{m}}$ is a local ring and Eq. (2) shows that $\mathcal{Z}(\mathcal{H})_{\mathfrak{m}} = Z'_{\mathfrak{m}} + \mathfrak{m}\mathcal{Z}(\mathcal{H})_{\mathfrak{m}}$, by Nakayama's lemma it follows that $Z'_{\mathfrak{m}} = \mathcal{Z}(\mathcal{H})_{\mathfrak{m}}$.

Thus every $z \in \mathcal{Z}(\mathcal{H})$ can be written as a $\mathbb{Z}[q^{\pm 1}]_{\mathfrak{m}}$ sum of z_{λ} 's and in fact must be a $\mathbb{Z}[q^{\pm 1}]$ sum as z, z_{λ} have no poles. Finally the z_{λ} clearly independent over $\mathbb{Z}[q^{\pm 1}]$

Corollary 2. All irreducibles of \mathcal{H} are f.d.

Proof. The above proof shows that \mathcal{H} is finite rank $(\leq |W_f|^2)$ over its center and thus follows from "big center trick."

2. The \widetilde{A}_1 case

Let $PGL_2 = (\mathbb{Z}, \{\pm 1\}, \mathbb{Z}, \{\pm 2\})$. Because $X^*(T) = \mathbb{Z}R^1$, $\mathcal{H} = \mathcal{H}(PGL_2) = \mathcal{H}_{IM}(\langle s, t \rangle) = \mathbb{C}\langle T_s, T_\sigma \rangle / \sim$. In particular, we have the quadratic relation $(T_s + 1)(T_s - q) = 0$. Thus, there are two obvious one dimensional irreducibles

$$\mathbb{C}_{triv}: T_s, T_\sigma \curvearrowright q$$
 $\mathbb{C}_{St}: T_s, T_\sigma \curvearrowright -1$

In the Bernstein presentation we have $\mathcal{H}(PGL_2) = \mathbb{C}\left\langle T_s, \theta, \theta^{-1} \right\rangle / \sim$ and recall from Che's talk that $\theta = q^{-1}T_{\sigma}T_s$ and thus

$$\mathbb{C}_{triv}: \theta \curvearrowright q$$
 $\mathbb{C}_{\mathrm{St}}: \theta \curvearrowright q^{-1}$

Theorem 3. (a) $L_t := \operatorname{Ind}_{\mathbb{C}[\theta^{\pm 1}]}^{\mathcal{H}} \mathbb{C}_t$ is irreducible $\forall t \in \mathbb{C}^{\times} \setminus \{q, q^{-1}, -1\}.$

- (b) $L_t \cong L_w \iff w = t^{-1}$.
- (c) Besides $\{L_t\}$, the only other irreducibles of $\mathcal{H}(PGL_2)$ are \mathbb{C}_{triv} , \mathbb{C}_{St} , and $\pi(-1, triv)$, $\pi(-1, St)$. All are 1-dimensional and fit in SES

$$0 \to \operatorname{St} \to L_q \to triv \to 0$$
$$0 \to triv \to L_{q^{-1}} \to \operatorname{St} \to 0$$
$$0 \to \pi(-1, \operatorname{St}) \to L_{-1} \stackrel{\longleftarrow}{\to} \pi(-1, triv) \to 0$$

¹Technically this should really be $\mathcal{H}(\mathrm{SL}_2)$ but Solleveld's notation is flipped so that $W_{aff} = W \ltimes R$.

Proof. (a) By Bernstein presentation we have $\mathcal{H} \stackrel{v.s}{=} \mathcal{H}_f \otimes \mathbb{C}[\theta^{\pm 1}]$ and thus $L_t \cong \mathcal{H}_f = \mathbb{C}(triv) \oplus \mathbb{C}(sgn)$ as \mathcal{H}_f -modules. Recall

$$\mathbb{C}(triv) = \mathbb{C}e_t, \ e_t = \frac{T_s + 1}{1 + q}, \qquad \qquad \mathbb{C}(sgn) = \mathbb{C}e_s, \ e_s = \frac{T_s - q}{1 + q}$$

Recall the defining commutation relation of $\mathcal{H}(PGL_2)$

$$\theta_1 T_s - T_s \theta_{-1} = (q - 1)(\theta_1 + 1) \tag{3}$$

It follows that

$$\theta_1(T_s+1) = T_s\theta_{-1} + q\theta_1 + (q-1) \tag{4}$$

If L_t is \mathcal{H} -reducible $\Longrightarrow L_t$ is \mathcal{H}_f -reducible, and from above it must contain $\mathbb{C}(triv)$ or $\mathbb{C}(sgn)$ as an \mathcal{H}_f submodule and since $\dim_{\mathbb{C}} L_t = 2$ it follows that $\mathbb{C}(triv)$ or $\mathbb{C}(sgn)$ must be a \mathcal{H} submodule \iff

$$ke_t \stackrel{?}{=} \theta_1 e_t = \theta_1 \frac{(T_s + 1) \otimes_{\theta} 1}{1 + q} \stackrel{Eq. (4)}{=} \frac{(T_s t^{-1} + (qt + q - 1)) \otimes_{\theta} 1}{1 + q}$$

 $\iff qt+q-1=t^{-1}$ and using the quadratic formula we see that $t=q^{-1}or-1$. A similar calculation with $\mathbb{C}(sqn)$ shows that t=q or -1.

(b) Consider the element $f = \frac{\theta(q-1) + q - 1}{\theta - \theta^{-1}} \in \mathbb{C}(X^*(T))$. By direct computation we have

$$\theta(T_s - f) = (T_s - f)\theta^{-1} \tag{5}$$

For $t \notin \{1, -1\}$ f has well defined action on L_t and given $v \in \mathbb{C}_t \setminus \{0\}$ we have

$$\theta(T_s - f)(1 \otimes_{\theta} v) \stackrel{Eq. (5)}{=} (T_s - f)\theta^{-1} \otimes_{\theta} v = t^{-1}(T_s - f)(1 \otimes_{\theta} v)$$

Since $1 \otimes_{\theta} 1$ generates the t-eigenspace it follows that $\text{Res}_{\mathbb{C}[\theta]} L_t = \mathbb{C}_t \oplus \mathbb{C}_{t^{-1}}$. Now,

$$L_{w} \cong L_{t} \iff 0 \neq \operatorname{Hom}_{\mathcal{H}}(\operatorname{Ind}_{\mathbb{C}[\theta^{\pm 1}]}^{\mathcal{H}}\mathbb{C}_{w}, L_{t}) = \operatorname{Hom}_{\mathbb{C}[\theta^{\pm 1}]}(\mathbb{C}_{w}, \operatorname{Res}_{\mathbb{C}[\theta^{\pm 1}]}L_{t})$$
$$= \operatorname{Hom}_{\mathbb{C}[\theta^{\pm 1}]}(\mathbb{C}_{w}, \mathbb{C}_{t} \oplus \mathbb{C}_{t^{-1}})$$
$$\iff w = t \text{ or } t^{-1}$$

(c) We claim any irreducible π of \mathcal{H} must be a quotient of L_t for some t. Since π is f.d. by Corollary 2 there must at at least one eigenvalue for θ say t. Now note

$$\operatorname{Hom}_{\mathcal{H}}(\operatorname{Ind}_{\mathbb{C}[\theta^{\pm 1}]}^{\mathcal{H}}\mathbb{C}_{t},\pi) = \operatorname{Hom}_{\mathbb{C}[\theta^{\pm 1}]}(\mathbb{C}_{t},\pi) \neq 0$$

which gives the surjection as π is irreducible.

Remark. The exact same argument in (c) shows that in general all simple \mathcal{H} -modules are quotients of $\operatorname{Ind}_{\mathbb{C}[X^*(T)]}^{\mathcal{H}}\mathbb{C}_t$ for some $t \in T$.

3. Local Langlands

<u>Unramified Local Langlands:</u> Let \mathcal{K} be a non-Archimedean local field and $W_{\mathcal{K}}$ the Weil-Deligne group ("discrete" version of $\operatorname{Gal}(\overline{\mathcal{K}}/\mathcal{K})$).

Theorem 2 (Satake)

 \mathcal{H}_{sph} is commutative and there is a canonical isomorphism

$$\mathcal{H}_{sph} \cong K_0(\operatorname{Rep} G^{\vee}) \otimes_{\mathbb{Z}} \mathbb{C}$$

By the Weyl character formula we know that $K_0(\operatorname{Rep} G^{\vee}) = \mathbb{Z}[X^*(T^{\vee})]^{W_f}$ and thus

$$K_0(\operatorname{Rep} G^{\vee}) \otimes_{\mathbb{Z}} \mathbb{C} = \mathbb{C}[X^*(T^{\vee})]^{W_f} = \mathcal{O}(T^{\vee}/W) = \mathcal{O}(G_{ss}^{\vee}/\operatorname{conjugacy})$$

In type A, the last equality is true because semisimple elements in GL_n correspond to diagonalizable elements so up to conjugacy are parameterized by entries on diagonal modulo the order (action of S_n). Now we see that $Irr \mathcal{H}_{sph} = Hom(\mathcal{H}_{sph}, \mathbb{C}) \xrightarrow{Satake} G_{ss}^{\vee}/conjugacy$ as desired.

Tamely ramified Local Langlands: Let $q = |\mathcal{O}/\mathfrak{m}|$ be the size of the residue field.

where \mathcal{N} is the nilpotent cone of \mathfrak{g} .